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Abstract

Epidemics caused by infectious diseases pose critical challenges to public health

systems and regional economies. This work presents an optimization framework that

integrates epidemiological modeling with policy planning to mitigate the impact of

infectious disease outbreaks. Building on traditional SIRD models, we incorporate a

suite of public health and social interventions, resulting in a complex nonlinear integer

program. To address computational challenges, we propose a Lagrangian decomposi-

tion approach for lower bounds and practical heuristics for solution generation. We

evaluated performance in a variety of scenarios, including those reminiscent of the

COVID-19 pandemic. Our framework supports decision-making at the regional level,

offering valuable insights into the trade-offs between health outcomes and intervention

costs.

1 Introduction

The initial outbreak of the COVID-19 (SARS-CoV-2) virus occurred in Wuhan, China, in

mid-November 2019 and rapidly spread across the globe by early 2020. By March of that

year, the virus had reached nearly every region worldwide, quickly becoming one of the most

widespread pandemics in recorded history—though not the deadliest. The disease exhibited

particularly high mortality among older adults, individuals with compromised immune sys-

tems, and those with underlying health conditions. By the end of 2021, approximately 275

million people had been infected, and nearly 5.4 million deaths were attributed to the virus.

Across various regions, efforts to contain the virus were frequently delayed, inadequately de-

signed, or inconsistently enforced. Many experts, including Chakraborty, Abhijit et al., 2020

and Brodeur, Abel et al., 2021, argued that a significant number of deaths—even in affluent

nations like the US and UK—could have been postponed or avoided altogether. Beyond the

1



tragic loss of life, the pandemic imposed severe economic consequences due to the stringent

policies needed to curb transmission and reduce fatality rates.

In addition to implementation delays and policy inefficiencies, there was notable disagree-

ment—both within and between countries—about which measures should be adopted and

under what circumstances. Resistance to specific US policies and mandates came from indi-

viduals, organizations, public officials, and institutions. In some cases, opposition stemmed

from the economic burdens imposed on businesses, sectors, and individuals. In others, it

was driven by limited understanding of viral transmission mechanisms and the necessity

of coordinated, comprehensive interventions. Misconceptions about the virus and proposed

policies, ideological objections, and outright denial of expert opinions further complicated

the public response. Political polarization also played a role in shaping attitudes toward

public health mandates.

This study proposes and tests a modeling framework designed to simulate the trajectory

of an epidemic while capturing the effects of mitigation policies intended to minimize health

and economic impacts. The model aims to quantify the major costs of an epidemic, including

fatalities, economic disruptions, and other social effects. It is also designed to be adaptable

to evolving circumstances, such as new virus variants, and to represent heterogeneous effects

across population subgroups.

Our framework is built upon a discrete-time version of the classic SIRD epidemiological

model Liu et al., 1987, which we extend to incorporate mitigation strategies—such as mask

mandates, travel restrictions, quarantines, and lockdowns—and their impacts on infection,

recovery, and mortality rates. The model also accounts for the direct implementation costs

of these policies, as well as broader economic and opportunity costs. Although these effects

are distributed across multiple entities, we consider total regional costs. While many disease

progression and cost parameters remain uncertain, we currently use deterministic estimates;

future work could incorporate stochastic elements. The model also supports sensitivity and

scenario analysis to assess the implications of various parameter settings.

This paper is organized as follows. In the next section, we review the literature on

epidemic modeling and policy impact analysis. Section 3 presents the base model, incorpo-

rating policy decision variables aimed at mitigating severe outcomes. This model is broadly

applicable to various epidemics with minimal adjustments. In Section 4, we introduce a

Lagrangian decomposition-based method to compute a lower bound for evaluating solution

quality. Section 5 develops a heuristic derived from the Lagrangian approach and introduces

two practical solution methods. In Section 6, we conduct computational experiments to
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evaluate the heuristic’s performance and provide extensive numerical results on policy effec-

tiveness. The final section summarizes key findings and outlines avenues for future research.

2 Literature Review

The outbreak of the COVID-19 pandemic caught governments, healthcare systems, and

societies around the globe off guard, revealing substantial gaps in preparedness and crisis

response strategies. As the virus spread rapidly and unpredictably, policymakers were thrust

into the difficult position of crafting and implementing urgent policies without the benefit

of precedent or clear evidence. This global health emergency spurred a surge in academic

research aimed at understanding and managing both the health and economic impacts of

the crisis.

A comprehensive survey by Brodeur, Abel et al., 2021 summarizes the economic con-

sequences of the pandemic and examines governmental responses across various countries.

Their work highlights the variation in policy effectiveness and the profound economic dis-

ruptions induced by lockdowns, business closures, and mobility restrictions. Similarly,

Chakraborty, Abhijit et al., 2020 investigates the impact of different government interven-

tions on the trajectory of the epidemic. Their study, grounded in epidemiological modeling,

sheds light on the potential effectiveness of mitigation strategies such as social distancing

and quarantine.

Despite these efforts, the literature reveals that many of the proposed models and strate-

gies are tailored to specific regional or national contexts, limiting their applicability to

broader epidemic settings. Most approaches lack the flexibility required to inform policy

decisions for future pandemics with different characteristics or resource constraints.

To address this gap, several researchers have turned to modeling tools that combine epi-

demiology with economics to explore the trade-offs in pandemic response strategies. For

instance, Hur, Sewon, 2023 introduce a life cycle–economic epidemiology framework that

evaluates when policies like stay-at-home subsidies are preferable to more stringent lock-

downs. This approach provides a structured way to assess the welfare implications of different

interventions across time and population segments.

Agent-based simulations have also been used to evaluate dynamic policies. Blakely, Tony

et al., 2021 apply such a model to the Australian context, deriving policy insights based

on simulated infection patterns and intervention outcomes. Their work demonstrates how

agent-based methods can capture heterogeneous behaviors and transmission dynamics at a
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granular level, offering nuanced guidance for public health planning.

Fu, Yuting et al., 2022 contribute to the discourse by examining optimal lockdown strate-

gies, particularly in the context of vaccine deployment. Their model seeks to balance the

dual objectives of minimizing economic disruption and reducing mortality, offering guidance

for dynamically adjusting policy intensity as vaccine coverage increases.

Parameter estimation plays a critical role in the construction of reliable epidemic mod-

els. Studies such as those by Köhler, Johannes et al., 2021, Yousefpour and Amin and Hadi

Jahanshahi and Stelios Bekiros, 2020, and Tsay, Calvin et al., 2020 focus on estimating key

epidemiological parameters from real-world data in Germany, China, and the US, respec-

tively. These parameterized models are then employed within optimal control frameworks,

typically to evaluate social distancing strategies. Their findings reinforce the value of using

real data to calibrate models for more accurate policy analysis.

Although these contributions are valuable, they often emphasize specific interventions or

localized conditions. To the best of our knowledge, our work represents the first attempt to

use large-scale optimization techniques to solve a generalized epidemic mitigation problem.

Our model accommodates a wide range of policies and outcomes, providing a versatile tool

for policymakers seeking robust strategies under uncertain and evolving conditions.

3 Model and Preliminaries

This study introduces a large-scale Mixed Integer Nonlinear Programming (MINLP) model

that extends the classical SIRD epidemiological framework into a discrete-time setting. The

central aim of this formulation is to explore the inherent trade-offs between the costs incurred

and the effectiveness achieved through the implementation of various mitigation policies.

In the context of an epidemic such as COVID-19, policies can differ significantly in

both cost and impact. For instance, while a basic masking mandate represents a low-cost

intervention, its effectiveness in controlling disease transmission is generally lower than that

of a more comprehensive and costly lockdown. The model captures these distinctions by

quantifying both the direct and indirect effects of each policy on the spread of the disease

and associated economic outcomes.

The solutions obtained from our MINLP model provide optimized policy recommenda-

tions that seek to minimize the total cost burden. This includes not only the direct costs of

implementing public health measures but also the indirect opportunity costs borne by the

population and the expenditures incurred by the healthcare system. By evaluating different
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combinations of interventions, the model facilitates informed decision-making that balances

economic constraints with public health objectives.

3.1 SIRD Model with Variable-Cost Interventions

In this subsection, we first define the parameters and variables used throughout this paper.

Later, we propose a mixed-integer non-linear programming (MINLP) model incorporating

the costs that change as the epidemic progresses. In subsequent sections, we modify this

objective to make the analysis more tractable.

3.1.1 Parameters

We consider a setting where there are N total individuals, of whom I0 are initially infected.

There are m interventions to consider, each with (up to) n intensity levels. We build our

model for a planning horizon of T days.

• Let Aij denote the fixed cost of implementing policy i at level j at time t.

• Let Bijt denote the switching cost of implementing policy i at level j at time t (only

incurred if policy not implemented in the previous period).

• Let Cijt denote the per-susceptible-individual cost of implementing policy i at level j

at time t.

• Let Cinfection and Cdeath denote the costs associated with an individual being infected

in a given period and a single individual losing their life due to disease, respectively.

• Let KI correspond to the infection rate such that the number of new infections is

proportional to KI multiplied by the number of interactions between susceptible and

infected individuals, modeled as the product of the sizes of those populations.

• Let KR and KD denote the proportion of infected individuals who recover and die in

each period, respectively.

• Let Pijt denote the factor by which new infections are decreased in period t due to

implementing policy i at level j. In this model, these factors are independent of one

another should multiple policies be implemented simultaneously.
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3.1.2 Decision Variables

In our model, two binary variables are used to calculate the policy implementing costs and

the cumulative efficacy of a policy.

• Let

yijt =

1 : policy i is implemented at level j in time period t

0 : otherwise
(1)

• Let

zijt =

1 : policy i is implemented at level j in time period t, but not t− 1

0 : otherwise
(2)

3.1.3 State Variables

Let St, It, Rt, dt, and Dt denote the population of individuals at time t who are Susceptible,

Infected, Recovered, dying (in the current period), and Dead (cumulatively), respectively.

These values depend on the interventions applied. These variables are used to calculate the

healthcare costs of a policy.

Let Pt denote the cumulative factor by which new infections are decreased between pe-

riods t− 1 and t. That is,

Pt =
∏

i,j s.t.
policy i used
at level j
in period t

Pijt (3)

3.1.4 Model Formulation: Epidemic Mitigation Problem (EMP)

The objective function, as described in (4), comprises the summation of costs associated with

policy interventions across all time periods, as well as the costs attributed to the disease’s

impact, including lost productivity and resources, throughout the entire time horizon.

To model the progression of the disease, the constraints (5), (6), (7), (8), and (9) de-

lineate the SIRD compartment subpopulations while considering infection-reduction factors

denoted as Pt for each time period t = 1, · · · , T . Additionally, constraint (10) captures the

multiplicative effects arising from concurrent interventions applied within the same period,
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as outlined in (3). The logical constraint that, in each period, at most one level from each

policy is employed is enforced by equation (11), and (12) ensures that the variables yijt align

with the binary definition given in (15).

min
y,P,S,I,R,D,d

m∑
i=1

n∑
j=1

T∑
t=1

Aijtyijt +Bijtzijt + CijtStyijt +
T∑
t=1

CinfectionIt + Cdeathdt (4)

s.t St = St−1 −KI · Pt · St−1 · It−1 t ∈ {2, . . . , T} (5)

It = It−1 +KI · Pt · St−1 · It−1 −KR · It−1 −KD · It−1 t ∈ {2, . . . , T} (6)

Rt = Rt−1 +KR · It−1 t ∈ {2, . . . , T} (7)

dt = KD · It−1 t ∈ {2, . . . , T} (8)

Dt = Dt−1 + dt t ∈ {2, . . . , T} (9)

Pt =
m∏
i=1

n∏
j=1

(1− yijt + Pijt · yijt) t ∈ {1, . . . , T} (10)

n∑
j=1

yijt ≤ 1 i, t (11)

yijt ∈ {0, 1} i, j, t (12)

zijt ≥ yij(t) − yij(t−1) (let yij0 = 0) i, j, t (13)

0 ≤ zijt ≤ 1 i, j, t ≥ 1 (14)

I1 = I0

S1 = N − I0

D1 = 0

R1 = 0

d1 = 0

Theorem 1. The (EMP) is NP-Complete when KI · S0 · I0 < 1 (Appendix - A)

Proof. Let’s consider a very simple instance of our original problem with no per-susceptible-

individual cost of implementing policy (Cijt = 0) nor switching cost (Bijt = 0) and only one
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possible intervention (m = 1), one level of intensity (n = 1). Let p be the factor by which

new infections are decreased in period t due to implementing this policy (i.e. Pijt = p).

Let, the decision variable yt be defined as follows:

yt =

1 : Policy is implemented in time period t

0 : otherwise
(15)

The (EMO) reduces to a standard knapsack problem of the form :

minimize
y

∑T

t=1
at · yt +

∑T

t=1
ct · It

s.t. S = KS · Y

I = KI · Y

where


S1

S2

...

ST

 , I =


I1

I2
...

IT

 , Y =


y1

y2
...

yT


KS and KI are T × T matrices with entries that are functions of p, KI , KR, and KD

The idea behind this reduction is to express the number of infected (It) and susceptible

(St) individuals at each period in terms of the rate of infection (KI) and the initial state of

the epidemic (S0 and I0) and notice that all the non-linear terms have negligible coefficients.

The details of the reduction can be found in the Appendix.

4 Problem Decomposition and Lower Bound

Lagrangian relaxation can be applied to tackle the entire (EMP) problem by relaxing the

constraints defined in (7) and, instead, by introducing a penalty into the objective function

using dual multipliers. This relaxation partitions the problem into two computationally more

manageable subproblems. We progressively enhance the lower bound by iteratively updating

the multipliers through gradient ascent. To begin with, our focus is on a model variant in

which interventions are characterized by a fixed cost that is directly proportional to the total
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population size (N), as depicted in (16). In essence, the costs are now time invariant. This

characteristic facilitates partitioning the Lagrangian minimization problem into two distinct

subproblems.

Replace the objective (4) in the mathematical program formulation of the (EMP) model

with

min
y,P,S,I,R,D,d

m∑
i=1

n∑
j=1

T∑
t=1

Aijtyijt +Bijtzijt + Cijt · St · yijt +
T∑
t=1

Cinfection · It + Cdeath · dt(4)

⇓

min
y,P,S,I,R,D,d

m∑
i=1

n∑
j=1

T∑
t=1

Aijtyijt +Bijtzijt + Cijt ·N · yijt +
T∑
t=1

Cinfection · It + Cdeath · dt (16)

Then, we transform constraint (10) using logarithms:

lnPt =
m∑
i=1

n∑
j=1

ln(1− yijt + Pijtyijt), t = 1, . . . , T (10-log)

Next, we remove this constraint from (EMO) and relaxed the objective (16) via multipliers

λt, t = 1, · · · , T to obtain a relaxed minimization problem:

min
y,P,S,I,R,D,d

[Objective (16)] +
T∑
t=1

λt

(
m∑
i=1

n∑
j=1

ln(1− yijt + Pijtyijt)− lnPt

)
(17)

s.t. 0 ≤ Pt ≤ 1 (18)

Constraints from (EMO) except for (10).

An optimal solution to the lagrangian relaxation (17) serves as a lower bound for the

optimal value of the full problem (EMP). To enforce the logical constraints that the policy

effectiveness factors are between 0 and 1; we introduce an additional constraint (18). It

is worth noting that in a numerical implementation, it may actually be preferable to pre-

compute a reasonable lower bound on Pt ∈ (0, 1) and constraint Pt ≤ Pt ≤ 1 because the

logarithm in (17) is undefined for Pt = 0. By iteratively solving the augmented problem (17)

and then using subgradient ascent to update λt for all t = 1, · · · , T , we obtain increasingly

tighter lower bounds on the optimal value for the full problem (EMP).

Note that the augmented problem (17) can be decomposed into two minimization prob-
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lems with optimal values L1(λ) and L2(λ):

L1(λ) is the solution to

min
y

m∑
i=1

n∑
j=1

T∑
t=1

[Aijt · yijt +Bijtzijt + Cijt ·N · yijt + λt ln(1− yijt + Pijtyijt)]

s.t.
n∑

j=1

yijt ≤ 1 i, t(11)

yijt ∈ {0, 1} i, j, t(12)

zijt ≥ yij(t) − yij(t−1) i, j, t(13)

0 ≤ zijt ≤ 1 i, j, t ≥ 1(14)

L2(λ) is the solution to

min
P,S,I,R,D,d

T∑
t=1

[Cinfection · It + Cdeath · dt − λt lnPt]

s.t. St = St−1 −KI · Pt · St−1 · It−1 t ∈ {2, . . . , T}(5)
It = It−1 +KI · Pt · St−1 · It−1 −KR · It−1 −KD · It−1 t ∈ {2, . . . , T}(6)
Rt = Rt−1 +KR · It−1 t ∈ {2, . . . , T}(7)
dt = KD · It−1 t ∈ {2, . . . , T}(8)
Dt = Dt−1 + dt t ∈ {2, . . . , T}(9)
Pt ≤ 1(18)

I1 = I0

S1 = N − I0

D1 = 0

R1 = 0

d1 = 0

This problem has no integer constraints and can be solved by any nonlinear programming

software.

To increase the tightness of the bound in the gradient-ascent step for the multipliers λ,

where λ+ the vector of multipliers at a subsequent iteration, we use the updating rule:
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λ+ = λ+ γ(∇L1(λ) +∇L2(λ)),

i.e.

λ+ = λt + γ ·

(
m∑
i=1

n∑
j=1

ln(1− yijt + Pijtyijt)− lnPt

)
. (19)

5 Heuristics and Upper Bounds

The previous section has established that a significantly simplified version of our overarching

problem (DMO) is NP-Hard. This makes it evident that commercial solvers are inadequate

for providing optimal solutions to real-sized instances of the problem. We confirm this in

our computational experiments. Given this computational complexity, we explored explore

heuristic approaches to solve the (EMP). These heuristics aim to provide practical solutions

to the (EMP) while simultaneously serving as upper bounds for the optimal solution the

(EMP).

5.1 Restriction Heuristic

Within our comprehensive DMO problem, we require a large set of decision variables, which

grow with the increase in the planning horizon, giving us decision variables of the order

O(nmT). In most practical scenarios, policymakers plan for a minimum horizon of 30 days

or more. This results in an overwhelming number of decision variables surpassing commercial

optimization solvers’ capabilities.

Additionally, from a practical perspective, it is highly unlikely that policymakers would

implement a new policy daily rather, they change a policy once in a while and continue

to implement the same policy till the next change is considered. Therefore, we consider

reducing the complexity of our problem by confining decision-making to a subset of days

within the planning horizon, which we denote as T ∗.

Our heuristic shares the same constraints as the (EMP), but differs in its objective

function, which is as follows:
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min
y,P,S,I,R,D,d

m∑
i=1

n∑
j=1

∑
t∈T

Aijtyijt +Bijtzijt + Cijt · yijt +
∑
t∈T

Cinfection · It + Cdeath · dt (20)

Constraints from (EMP)

yijt ∈ {0, 1} i, j, t ∈ T ∗ ⊂ T (21)

yijt = yij(t−1) i, j, t /∈ T ∗ ⊂ T (22)

The performance of our heuristic, concerning both its optimality and runtime, is closely tied

to the frequency of decision-making over the planning horizon. A higher decision frequency

results in an increased number of decision variables, leading to longer computation times,

but it also brings us closer to reaching an optimal solution. In practice, information about

decision frequency is typically sourced from surveys and insights shared by policymakers.

Section 6 discusses the performance of our heuristics for various decision-making frequencies.

6 Computational Results

To understand the computational difficulty in solving our problem exactly using commercial

software, we tried solving our (EMP) with different parameters using several software, of

which the BARON solver was the most efficient. Table 1 shows the time BARON took to

give an optimal solution to our MINLP for different problem instances for a planning horizon

of 30 days, 60 days, and 90 days. The details of the parameter choices are provided in the

Appendix. From Table 1, we can see that the time BARON takes to solve our MINLP in-

creases exponentially with the duration of the planning horizon. In a few instances, BARON

does not terminate even for as short as a 60-day planning horizon. These computational

results further warrant the need for a heuristic to solve our (EMP) in a reasonable amount

of time.
1 2 3

As discussed in the previous section, our heuristic’s performance depends on the frequency

at which new policy decisions are made during the planning horizon. Table 2 shows the

objective value and the heuristic’s run time for various decision-making frequencies for an

1All values reported in this table are in minutes.
2“NA” represents that BARON did not terminate even after 24 hours of runtime.
3Description of each instance is given in the Appendix.
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Table 1
30 days 60 days 90 days

Instance – 1 2 12 34
Instance – 2 5 39 116
Instance – 3 1 11 149
Instance – 4 10 109 451
Instance – 5 5 NA NA
Instance – 6 30 NA NA
Instance – 7 2 55 NA

illustrative problem instance (instance-3 in Appendix) of a 90-day planning horizon. A

frequency of 4 represents that the policymakers can change the existing policy only on days

1, 16,31, and 46 of the 60-day planning horizon. The decision on each of these four days will

be fixed for the next 15 days until the next decision is made.
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Table 2
Number of decisions over a 90

day planning horizon
Cost Runtime

3 11273811 4
5 11273811 15
9 11273811 49
10 11273811 67
30 11121990 101
90 11021981 147

4 5

From Table 2, we can see that the runtime increases as the frequency of decision-making

increases along with the accuracy of the heuristic solution. This table suggests that we can

maintain the quality of the heuristic by selecting a decision-making frequency with lesser

runtime.

Tables 3, 4, and 5 summarize the comparative performance of our heuristic with the

optimal solution obtained from BARON and the Lagrangian lower bound, as outlined in

Section 4, across planning horizons of 30, 60, and 90 days, respectively. We tried our heuristic

at different frequencies and picked one with a reasonable solution in an acceptable run time.

A description of each instance is given in the Appendix.

In our experiment results, our heuristic solution is mostly within 5 percent of the la-

grangian lower bounds. In the case of a 30-day planning horizon, the worst-case performance

of our heuristic was 3.63 percent relative to BARON’s optimal solution. In the case of a

60-day planning horizon, the worst-case performance of our heuristic was 5.22 percent of the

Lagrangian lower bound, while the worst-case performance for a 90-day planning horizon

was 3.80 percent of the Lagrangian lower bound.

Table 3 - 30 days planning horizon
Instances Heuristic Upper

Bound (HUB)
BARON’s

Optimal (BO)
Lagrangian
Lower Bound

(LLB)

100*(HUB -
BO)/BO

100*(HUB -
LLB)/LLB

Instance – 1 3691380 3591371 3514188 2.78 2.20
Instance – 2 4078436 3935556 3865842 3.63 1.80
Instance – 3 3804124 3704115 3632046 2.70 1.98
Instance – 4 3216273 3116264 3049704 3.21 2.18
Instance – 5 10274402 10072261 9755596 2.01 3.24
Instance – 6 24814380 24784185 24513650 0.12 1.10
Instance – 7 3969552 3869543 3826080 2.59 1.14

4All values reported in this Table are in minutes
5A description of Instance - 3 is given in the Appendix
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Table 4 - 60 days planning horizon
Instances Heuristic Upper

Bound (HUB)
BARON’s

Optimal (BO)
Lagrangian
Lower Bound

(LLB)

100*(HUB -
BO)/BO

100*(HUB -
LLB)/LLB

Instance – 1 7350017 7065437 6985137 4.02 5.22
Instance – 2 8366226 8215604 8213950 1.83 1.85
Instance – 3 7668017 7436231 7363505 3.12 4.14
Instance – 4 6039953 5905291 5856708 2.28 3.13
Instance – 5 15969367 NA 15951365 NA 0.11
Instance – 6 477484128 NA 477435249 NA 0.01
Instance – 7 8226272 8044481 7985381 2.26 3.02

6

Table 5 - 90 days planning horizon
Instances Heuristic Upper

Bound (HUB)
BARON’s

Optimal (BO)
Lagrangian
Lower Bound

(LLB)

100*(HUB -
BO)/BO

100*(HUB -
LLB)/LLB

Instance – 1 10684305 10351742 10293480 3.21 3.80
Instance – 2 12843333 12700593 12656582 1.12 1.48
Instance – 3 11273811 11021981 10955420 2.28 2.91
Instance – 4 8712383 8660430 8597906 0.60 1.33
Instance – 5 20241880 NA 20206575 NA 0.18
Instance – 6 264647207 NA 264617312 NA 0.01
Instance – 7 12499440 12328581 12468464 1.39 0.25

7

7 Summary and Future Work

In this paper, we considered the intricate problem of assisting policymakers in making in-

formed binary decisions regarding the implementation of various epidemic control policies

over a specified planning horizon. To approach this challenge, we proposed a comprehen-

sive Mixed Integer Nonlinear Programming (MINLP) framework that models the trade-offs

between minimizing total implementation costs and adhering to constraints that govern the

dynamics of epidemic transmission.

Our contributions include both theoretical insights and computational results. We estab-

lished that the resulting MINLP formulation is computationally intractable due to its large

scale and combinatorial complexity. To address this, we employed a decomposition-based

strategy that partitions the original problem into two more tractable subproblems. Solving

these subproblems to optimality allowed us to generate a Lagrangian lower bound for the

original MINLP. In addition, we developed a practical and intuitive heuristic approach whose

6“NA” represents that BARON did not terminate even after 24 hours of runtime
7“NA” represents that BARON did not terminate even after 24 hours of runtime
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performance was benchmarked against the Lagrangian lower bound and the optimal solution

produced by a commercial solver.

Looking forward, our research agenda includes several key extensions. One priority is

to refine and enhance our heuristic techniques to narrow the optimality gap relative to

the Lagrangian bound. In particular, we are exploring dynamic heuristics that iteratively

construct the set T ∗ based on the evolving trajectory of the epidemic. This dynamic extension

aims to improve the responsiveness and adaptability of our approach, enabling policymakers

to revise decisions in real time as new information becomes available.

Another important direction is the integration of vaccination strategies into our model.

This enhancement will allow us to evaluate both the timing and allocation of vaccines,

and to determine optimal proactive deployment policies that maximize epidemiological and

economic benefits.

We also plan to expand the scope of our model to address operational decisions in health-

care systems, such as optimal staffing levels and timely procurement of medical equipment.

These applications are critical for strengthening the resilience and preparedness of hospitals

and public health infrastructure during epidemics.

Finally, we are in the process of collecting and curating detailed COVID-19 data from

Los Angeles County. Applying our model to this dataset will enable a series of ”what-if”

simulations, providing actionable insights and deepening our understanding of how different

intervention strategies might influence epidemic outcomes under varying conditions.
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Appendix

A Proof of Theorem 1

Below is the detailed proof of Theorem 1.

Proof. We first express the number of susceptible individuals St and infected individuals It

in terms of KI , S0, and I0.

S2 = S1 −KI · (1− y2 + p · y2) · S1 · I1 = K21 +K22 · y2
where,

K21 = S0 −KI · S0 · I0;

K22 = (1− p) ·KI · S0 · I0
Note,

K21 < S0 and K22 < KI · S0 · I0

I2 = I1 +KI · (1− y2 + p · y2) · S1 · I1 −KR · I1 −KD · I1 = K ′
21 +K ′

22 · y2
where,

K ′
21 = (1−KR −KD) · I0 +KI · S0 · I0;

K ′
22 = (p− 1) ·KI · S0 · I0

Note,

K ′
21 ≊ KI · I0 · S0 and K ′

22 < KI · S0 · I0

S3 = S2 −KI · (1− y3 + p · y3) · S2 · I2
= K31 +K32 · y2 +K33 · y3 +K34 · y2 · y3 +K35 · y22 +K36 · y22 · y3
where,

K31 = K21 −KI ·K21 ·K ′
21

K32 = K22 −KI · (K22 ·K ′
21 +K21 ·K ′

22)

K33 = (1− p) ·KI ·K21 ·K ′
21

K34 = (1− p) ·KI · (K22 ·K ′
21 +K21 ·K ′

22)
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K35 = KI ·K22 ·K ′
22

K36 = (1− p) ·KI ·K22 ·K ′
22

Note,

K31 < S0

K32 < KI · S0 · I0
K33 < KI · S0 · I0
K34 ≪ 1

K35 ≪ 1

K36 ≪ 1

I3 = I2 +KI · (1− y3 + p · y3) · S2 · I2 −KR · I2 −KD · I2 = K ′
31 +K ′

32 · y2 +K ′
33 · y3 +K ′

34 · y2 · y3
+K ′

35 · y22 +K ′
36 · y22 · y3

where,

K ′
31 = K ′

21 +KI ·K21 ·K ′
21

K ′
32 = K ′

22 +KI · (K22 ·K ′
21 +K21 ·K ′

22)

K ′
33 = −(1− p) ·KI ·K21 ·K ′

21

K ′
34 = −(1− p) ·KI · (K21 ·K ′

22 +K22 ·K ′
21)

K ′
35 = KI ·K22 ·K ′

22

K ′
36 = −(1− p) ·KI ·K22 ·K ′

22

Note,

K ′
31 ≊ KI · I0 · S0

K ′
32 < KI · S0 · I0

K ′
33 < KI · S0 · I0

K ′
34 ≪ 1

K ′
35 ≪ 1

K ′
36 ≪ 1
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We notice that the coefficients of all the non-linear terms are negligible, which allows

us to write the number of infected (It) and susceptible (St) individuals at each period as a

linear function of the decision variables yt. Replacing St and It in our original problem will

give us a knap-sack problem which is NP-Complete.

B Time independent parameters

In this work, we used time-independent parameters. The values of the parameters reported

are the same for the entirety of the planning horizon.

Below is the table for the different costs of each of the interventions

Cost and Efficacy Parameters
Cost and Effi-
cacy

policy-1,
level-LOW

policy-1,
level-HIGH

policy-2,
level-LOW

policy-2,
level-HIGH

policy-3,
level-LOW

policy-3,
level-HIGH

Setup Cost 9 18 90 180 900 1800
Policy Cost 1 2 10 20 100 200
Switching Cost 2 4 20 40 200 400
Infection Cost 3000 3000 3000 3000 3000 3000
Death Cost 8000 8000 8000 8000 8000 8000
P 0.05 0.01 0.0005 0.0001 0.000005 0.000001
P* 0.07 0.03 0.0007 0.0003 0.000007 0.000003

Below is the table for the parameters for each of the instances used in our computational

experiments.

Parameter values for each instance
Instance Infection Rate

(Ki)
Recovery Rate

(Kr)
Death Rate

(Kd)
Initial Infections

(I0)
Population Size

(N)
Policy-Efficacy

Instance–1 0.000009 0.01 0.05 10 100000 P
Instance–2 0.000013 0.01 0.05 10 100000 P
Instance–3 0.000009 0.002 0.05 10 100000 P
Instance–4 0.000009 0.01 0.1 10 100000 P
Instance–5 0.000009 0.01 0.05 100 100000 P
Instance–6 0.000009 0.01 0.05 10 500000 P
Instance–7 0.000009 0.01 0.05 10 100000 P*

P and P ∗ are as per the previous table
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