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Abstract

Epidemics caused by infectious diseases pose critical challenges to public health
systems and regional economies. This work presents an optimization framework that
integrates epidemiological modeling with policy planning to mitigate the impact of
infectious disease outbreaks. Building on traditional SIRD models, we incorporate a
suite of public health and social interventions, resulting in a complex nonlinear integer
program. To address computational challenges, we propose a Lagrangian decomposi-
tion approach for lower bounds and practical heuristics for solution generation. We
evaluated performance in a variety of scenarios, including those reminiscent of the
COVID-19 pandemic. Our framework supports decision-making at the regional level,
offering valuable insights into the trade-offs between health outcomes and intervention

costs.

1 Introduction

The initial outbreak of the COVID-19 (SARS-CoV-2) virus occurred in Wuhan, China, in
mid-November 2019 and rapidly spread across the globe by early 2020. By March of that
year, the virus had reached nearly every region worldwide, quickly becoming one of the most
widespread pandemics in recorded history—though not the deadliest. The disease exhibited
particularly high mortality among older adults, individuals with compromised immune sys-
tems, and those with underlying health conditions. By the end of 2021, approximately 275
million people had been infected, and nearly 5.4 million deaths were attributed to the virus.
Across various regions, efforts to contain the virus were frequently delayed, inadequately de-
signed, or inconsistently enforced. Many experts, including Chakraborty, Abhijit et al., 2020
and Brodeur, Abel et al., 2021, argued that a significant number of deaths—even in affluent

nations like the US and UK—could have been postponed or avoided altogether. Beyond the



tragic loss of life, the pandemic imposed severe economic consequences due to the stringent
policies needed to curb transmission and reduce fatality rates.

In addition to implementation delays and policy inefficiencies, there was notable disagree-
ment—both within and between countries—about which measures should be adopted and
under what circumstances. Resistance to specific US policies and mandates came from indi-
viduals, organizations, public officials, and institutions. In some cases, opposition stemmed
from the economic burdens imposed on businesses, sectors, and individuals. In others, it
was driven by limited understanding of viral transmission mechanisms and the necessity
of coordinated, comprehensive interventions. Misconceptions about the virus and proposed
policies, ideological objections, and outright denial of expert opinions further complicated
the public response. Political polarization also played a role in shaping attitudes toward
public health mandates.

This study proposes and tests a modeling framework designed to simulate the trajectory
of an epidemic while capturing the effects of mitigation policies intended to minimize health
and economic impacts. The model aims to quantify the major costs of an epidemic, including
fatalities, economic disruptions, and other social effects. It is also designed to be adaptable
to evolving circumstances, such as new virus variants, and to represent heterogeneous effects
across population subgroups.

Our framework is built upon a discrete-time version of the classic SIRD epidemiological
model Liu et al., 1987, which we extend to incorporate mitigation strategies—such as mask
mandates, travel restrictions, quarantines, and lockdowns—and their impacts on infection,
recovery, and mortality rates. The model also accounts for the direct implementation costs
of these policies, as well as broader economic and opportunity costs. Although these effects
are distributed across multiple entities, we consider total regional costs. While many disease
progression and cost parameters remain uncertain, we currently use deterministic estimates;
future work could incorporate stochastic elements. The model also supports sensitivity and
scenario analysis to assess the implications of various parameter settings.

This paper is organized as follows. In the next section, we review the literature on
epidemic modeling and policy impact analysis. Section 3 presents the base model, incorpo-
rating policy decision variables aimed at mitigating severe outcomes. This model is broadly
applicable to various epidemics with minimal adjustments. In Section 4, we introduce a
Lagrangian decomposition-based method to compute a lower bound for evaluating solution
quality. Section 5 develops a heuristic derived from the Lagrangian approach and introduces

two practical solution methods. In Section 6, we conduct computational experiments to



evaluate the heuristic’s performance and provide extensive numerical results on policy effec-

tiveness. The final section summarizes key findings and outlines avenues for future research.

2 Literature Review

The outbreak of the COVID-19 pandemic caught governments, healthcare systems, and
societies around the globe off guard, revealing substantial gaps in preparedness and crisis
response strategies. As the virus spread rapidly and unpredictably, policymakers were thrust
into the difficult position of crafting and implementing urgent policies without the benefit
of precedent or clear evidence. This global health emergency spurred a surge in academic
research aimed at understanding and managing both the health and economic impacts of
the crisis.

A comprehensive survey by Brodeur, Abel et al., 2021 summarizes the economic con-
sequences of the pandemic and examines governmental responses across various countries.
Their work highlights the variation in policy effectiveness and the profound economic dis-
ruptions induced by lockdowns, business closures, and mobility restrictions. Similarly,
Chakraborty, Abhijit et al., 2020 investigates the impact of different government interven-
tions on the trajectory of the epidemic. Their study, grounded in epidemiological modeling,
sheds light on the potential effectiveness of mitigation strategies such as social distancing
and quarantine.

Despite these efforts, the literature reveals that many of the proposed models and strate-
gies are tailored to specific regional or national contexts, limiting their applicability to
broader epidemic settings. Most approaches lack the flexibility required to inform policy
decisions for future pandemics with different characteristics or resource constraints.

To address this gap, several researchers have turned to modeling tools that combine epi-
demiology with economics to explore the trade-offs in pandemic response strategies. For
instance, Hur, Sewon, 2023 introduce a life cycle—economic epidemiology framework that
evaluates when policies like stay-at-home subsidies are preferable to more stringent lock-
downs. This approach provides a structured way to assess the welfare implications of different
interventions across time and population segments.

Agent-based simulations have also been used to evaluate dynamic policies. Blakely, Tony
et al., 2021 apply such a model to the Australian context, deriving policy insights based
on simulated infection patterns and intervention outcomes. Their work demonstrates how

agent-based methods can capture heterogeneous behaviors and transmission dynamics at a



granular level, offering nuanced guidance for public health planning.

Fu, Yuting et al., 2022 contribute to the discourse by examining optimal lockdown strate-
gies, particularly in the context of vaccine deployment. Their model seeks to balance the
dual objectives of minimizing economic disruption and reducing mortality, offering guidance
for dynamically adjusting policy intensity as vaccine coverage increases.

Parameter estimation plays a critical role in the construction of reliable epidemic mod-
els. Studies such as those by Kohler, Johannes et al., 2021, Yousefpour and Amin and Hadi
Jahanshahi and Stelios Bekiros, 2020, and Tsay, Calvin et al., 2020 focus on estimating key
epidemiological parameters from real-world data in Germany, China, and the US, respec-
tively. These parameterized models are then employed within optimal control frameworks,
typically to evaluate social distancing strategies. Their findings reinforce the value of using
real data to calibrate models for more accurate policy analysis.

Although these contributions are valuable, they often emphasize specific interventions or
localized conditions. To the best of our knowledge, our work represents the first attempt to
use large-scale optimization techniques to solve a generalized epidemic mitigation problem.
Our model accommodates a wide range of policies and outcomes, providing a versatile tool

for policymakers seeking robust strategies under uncertain and evolving conditions.

3 Model and Preliminaries

This study introduces a large-scale Mixed Integer Nonlinear Programming (MINLP) model
that extends the classical SIRD epidemiological framework into a discrete-time setting. The
central aim of this formulation is to explore the inherent trade-offs between the costs incurred
and the effectiveness achieved through the implementation of various mitigation policies.

In the context of an epidemic such as COVID-19, policies can differ significantly in
both cost and impact. For instance, while a basic masking mandate represents a low-cost
intervention, its effectiveness in controlling disease transmission is generally lower than that
of a more comprehensive and costly lockdown. The model captures these distinctions by
quantifying both the direct and indirect effects of each policy on the spread of the disease
and associated economic outcomes.

The solutions obtained from our MINLP model provide optimized policy recommenda-
tions that seek to minimize the total cost burden. This includes not only the direct costs of
implementing public health measures but also the indirect opportunity costs borne by the

population and the expenditures incurred by the healthcare system. By evaluating different



combinations of interventions, the model facilitates informed decision-making that balances

economic constraints with public health objectives.

3.1 SIRD Model with Variable-Cost Interventions

In this subsection, we first define the parameters and variables used throughout this paper.
Later, we propose a mixed-integer non-linear programming (MINLP) model incorporating
the costs that change as the epidemic progresses. In subsequent sections, we modify this

objective to make the analysis more tractable.

3.1.1 Parameters

We consider a setting where there are N total individuals, of whom I0 are initially infected.
There are m interventions to consider, each with (up to) n intensity levels. We build our

model for a planning horizon of T days.

e Let A;; denote the fixed cost of implementing policy 7 at level j at time ¢.

e Let B;j; denote the switching cost of implementing policy i at level j at time ¢ (only

incurred if policy not implemented in the previous period).

o Let Cjj; denote the per-susceptible-individual cost of implementing policy ¢ at level j

at time t.

o Let Cipfection and Cieqrr, denote the costs associated with an individual being infected

in a given period and a single individual losing their life due to disease, respectively.

e Let K correspond to the infection rate such that the number of new infections is
proportional to K; multiplied by the number of interactions between susceptible and

infected individuals, modeled as the product of the sizes of those populations.

e Let Kr and Kp denote the proportion of infected individuals who recover and die in

each period, respectively.

e Let P;;; denote the factor by which new infections are decreased in period ¢ due to
implementing policy ¢ at level j. In this model, these factors are independent of one

another should multiple policies be implemented simultaneously.



3.1.2 Decision Variables

In our model, two binary variables are used to calculate the policy implementing costs and

the cumulative efficacy of a policy.

o Let

1 : policy ¢ is implemented at level j in time period ¢ )
Yijt =
0 : otherwise

e Let

1 : policy 7 is implemented at level 7 in time period t, but not ¢ — 1 @)
Rijt =
0 : otherwise

3.1.3 State Variables

Let Sy, I, Ry, d;, and D, denote the population of individuals at time ¢ who are Susceptible,
Infected, Recovered, dying (in the current period), and Dead (cumulatively), respectively.
These values depend on the interventions applied. These variables are used to calculate the
healthcare costs of a policy.

Let P, denote the cumulative factor by which new infections are decreased between pe-
riods t — 1 and t. That is,

p= 1] P (3)

4,7 s.t.
policy ¢ used
at level j
in period ¢t

3.1.4 Model Formulation: Epidemic Mitigation Problem (EMP)

The objective function, as described in (4), comprises the summation of costs associated with
policy interventions across all time periods, as well as the costs attributed to the disease’s
impact, including lost productivity and resources, throughout the entire time horizon.

To model the progression of the disease, the constraints (5), (6), (7), (8), and (9) de-
lineate the SIRD compartment subpopulations while considering infection-reduction factors
denoted as P, for each time period t = 1,---,T. Additionally, constraint (10) captures the

multiplicative effects arising from concurrent interventions applied within the same period,



as outlined in (3). The logical constraint that, in each period, at most one level from each

policy is employed is enforced by equation (11), and (12) ensures that the variables yijt align

with the binary definition given in (15).

min
y7P7S7I7R

S.t St

By

n

m n T

’D7d
i=1 j=1 t=1

= St—l - KI . Pt : St—l . It—l

T

t=1

=L a+K;-P-S1- It —Kp-I,1 —Kp- 1,4

=R +Kr- I

=Kp- I

=D; 1 +d;

= H H(l — Yiji + Pije - Yijt)
i=1 j=1

Zyijt <1

j=1

Yijt

Theorem 1.

€ {0,1}

Zijt > Yij) — Yije—1) (et yio = 0)

0<z; <1

L =1

S, =N-—-1
D, =

R, =

d =0

Z Z Z Aijiyije + Bijezije + CijeSiyije + Z Cinfection Lt + Clacandy

te{2,....,T}
te{2,...,T}
te{2,...,T}
te{2,...,T}
te{2,...,T}
te{l,...,T}
it
i,J,t
i, ]t
1,7,t>1

The (EMP) is NP-Complete when K-Sy - Iy < 1 (Appendix - A)

(4)

Proof. Let’s consider a very simple instance of our original problem with no per-susceptible-

individual cost of implementing policy (C;;; = 0) nor switching cost (B;;; = 0) and only one



possible intervention (m = 1), one level of intensity (n = 1). Let p be the factor by which
new infections are decreased in period ¢ due to implementing this policy (i.e. Pz = p).

Let, the decision variable y; be defined as follows:

1 : Policy is implemented in time period ¢
Y = (15)
0 :otherwise

The (EMO) reduces to a standard knapsack problem of the form :

T T
minimize E ) ay - Yy + E ) c - I
t= =

Y
s.t. S:Ksy

I=K;-Y
Sl [1 n
S I
where '2 , I= '2 , Y = 3{2
_ST_ _[T_ | IT |

Kg and K7 are T' x T matrices with entries that are functions of p, K; , Kr, and Kp
The idea behind this reduction is to express the number of infected (I;) and susceptible
(S;) individuals at each period in terms of the rate of infection (K;) and the initial state of

the epidemic (Sp and Ij) and notice that all the non-linear terms have negligible coefficients.

The details of the reduction can be found in the Appendix.

4 Problem Decomposition and Lower Bound

Lagrangian relaxation can be applied to tackle the entire (EMP) problem by relaxing the
constraints defined in (7) and, instead, by introducing a penalty into the objective function
using dual multipliers. This relaxation partitions the problem into two computationally more
manageable subproblems. We progressively enhance the lower bound by iteratively updating
the multipliers through gradient ascent. To begin with, our focus is on a model variant in

which interventions are characterized by a fixed cost that is directly proportional to the total



population size (N), as depicted in (16). In essence, the costs are now time invariant. This
characteristic facilitates partitioning the Lagrangian minimization problem into two distinct
subproblems.

Replace the objective (4) in the mathematical program formulation of the (EMP) model
with

m n T T
min g g E Aijtyije + Bijiziji + Cije - St - Yije + E Cinfection * It + Cleatn - dt(4)
y7P’S?I7R7D?d . .
i=1 j=1 t=1 t=1
m n T T
min g g E Aijtyije + Bijizijt + Cije - N - yije + g Cinfection * It + Cleatn, - d¢ - (16)
wPSLRDd et et s —
=1 5= = —

Then, we transform constraint (10) using logarithms:

m

In P, = Zzln(l — Yt + Pyyige), t=1,....T (10-log)

i=1 j=1

Next, we remove this constraint from (EMO) and relaxed the objective (16) via multipliers

Ai,t =1,---,T to obtain a relaxed minimization problem:

T m n
y7P7§2i7%7D’d [Objective (16)] 4+ Z A\t (Z Z In(1 — yije + Pijiyije) — In Pt) (17)

=1 i=1 j=1
st. 0<P <1 (18)
Constraints from (EMO) except for (10).

An optimal solution to the lagrangian relaxation (17) serves as a lower bound for the
optimal value of the full problem (EMP). To enforce the logical constraints that the policy
effectiveness factors are between 0 and 1; we introduce an additional constraint (18). It
is worth noting that in a numerical implementation, it may actually be preferable to pre-
compute a reasonable lower bound on P, € (0,1) and constraint P, < P, < 1 because the
logarithm in (17) is undefined for P, = 0. By iteratively solving the augmented problem (17)
and then using subgradient ascent to update \; for all t = 1,---, T, we obtain increasingly
tighter lower bounds on the optimal value for the full problem (EMP).

Note that the augmented problem (17) can be decomposed into two minimization prob-



lems with optimal values L;(\) and Ly(\):
Ly () is the solution to

m n T

Hbm Z Z Z [Aije * Yije + Bijezige + Cije - N - yije + M In(1 — e + Pijiyize)]

i=1 j=1 t=1
s.t. Zyijt <1 i, T(11)

j=1

yie € {0,1} i, J,t12)

Zijt 2 Yij(t) — Yij(t—1) i, 7, t(13)

0<zj; <1 1, 7,6 > 1

Lo(A) is the solution to

T
P,S,I?}%I}D,d Z [Cintection * It + Caeatn - dt — Ay In Py
st. Sy =81 KPSy I tef{2,... T
L=L +K;-FP-5_-1;1—Kr-I,_1—Kp-1,_ te{2,....T}e
Ri=Riy+ KLy te{2,... T}
d = Kp -1, te{2,...,Ths
D, =D, +d, te{2,....T}y
Py <1y
L =1
S, = N — I,
D=0
Ry =0
d; =0

This problem has no integer constraints and can be solved by any nonlinear programming
software.
To increase the tightness of the bound in the gradient-ascent step for the multipliers A,

where At the vector of multipliers at a subsequent iteration, we use the updating rule:

10



AT = A +~(VLi(A\) + VL (N)),

1.e.

M= N+7- (Z Zln(l — Yijt + Pijiyije) — In Pt) : (19)

5 Heuristics and Upper Bounds

The previous section has established that a significantly simplified version of our overarching
problem (DMO) is NP-Hard. This makes it evident that commercial solvers are inadequate
for providing optimal solutions to real-sized instances of the problem. We confirm this in
our computational experiments. Given this computational complexity, we explored explore
heuristic approaches to solve the (EMP). These heuristics aim to provide practical solutions
to the (EMP) while simultaneously serving as upper bounds for the optimal solution the

(EMP).

5.1 Restriction Heuristic

Within our comprehensive DMO problem, we require a large set of decision variables, which
grow with the increase in the planning horizon, giving us decision variables of the order
O(nmT). In most practical scenarios, policymakers plan for a minimum horizon of 30 days
or more. This results in an overwhelming number of decision variables surpassing commercial
optimization solvers’ capabilities.

Additionally, from a practical perspective, it is highly unlikely that policymakers would
implement a new policy daily rather, they change a policy once in a while and continue
to implement the same policy till the next change is considered. Therefore, we consider
reducing the complexity of our problem by confining decision-making to a subset of days
within the planning horizon, which we denote as T™.

Our heuristic shares the same constraints as the (EMP), but differs in its objective

function, which is as follows:

11



. Péf,f}i% b dz Z Z Aijtyije + Bijezije + Cije - Yije + Z Cinfection * It + Clearn - dy (20)
T =1 j=1 teT teT

Constraints from (EMP)
Yije € {O, 1} i,j,teT*CT (21)
Yijt = Yij(t—1) i,j,t ¢ T CT (22)

The performance of our heuristic, concerning both its optimality and runtime, is closely tied
to the frequency of decision-making over the planning horizon. A higher decision frequency
results in an increased number of decision variables, leading to longer computation times,
but it also brings us closer to reaching an optimal solution. In practice, information about
decision frequency is typically sourced from surveys and insights shared by policymakers.

Section 6 discusses the performance of our heuristics for various decision-making frequencies.

6 Computational Results

To understand the computational difficulty in solving our problem exactly using commercial
software, we tried solving our (EMP) with different parameters using several software, of
which the BARON solver was the most efficient. Table 1 shows the time BARON took to
give an optimal solution to our MINLP for different problem instances for a planning horizon
of 30 days, 60 days, and 90 days. The details of the parameter choices are provided in the
Appendix. From Table 1, we can see that the time BARON takes to solve our MINLP in-
creases exponentially with the duration of the planning horizon. In a few instances, BARON
does not terminate even for as short as a 60-day planning horizon. These computational
results further warrant the need for a heuristic to solve our (EMP) in a reasonable amount
of time.
123

As discussed in the previous section, our heuristic’s performance depends on the frequency
at which new policy decisions are made during the planning horizon. Table 2 shows the

objective value and the heuristic’s run time for various decision-making frequencies for an

LAll values reported in this table are in minutes.
24NA” represents that BARON did not terminate even after 24 hours of runtime.
3Description of each instance is given in the Appendix.
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Table

30 days 60 days 90 days
Instance — 1 2 12 34
Instance — 2 5 39 116
Instance — 3 1 11 149
Instance — 4 10 109 451
Instance — 5 5 NA NA
Instance — 6 30 NA NA
Instance — 7 2 55 NA

illustrative problem instance (instance-3 in Appendix) of a 90-day planning horizon. A

frequency of 4 represents that the policymakers can change the existing policy only on days

1, 16,31, and 46 of the 60-day planning horizon. The decision on each of these four days will

be fixed for the next 15 days until the next decision is made.

13



Table 2
Number of decisions over a 90 Cost Runtime
day planning horizon
3 11273811 4
5 11273811 15
9 11273811 49
10 11273811 67
30 11121990 101
90 11021981 147

45

From Table 2, we can see that the runtime increases as the frequency of decision-making
increases along with the accuracy of the heuristic solution. This table suggests that we can
maintain the quality of the heuristic by selecting a decision-making frequency with lesser
runtime.

Tables 3, 4, and 5 summarize the comparative performance of our heuristic with the
optimal solution obtained from BARON and the Lagrangian lower bound, as outlined in
Section 4, across planning horizons of 30, 60, and 90 days, respectively. We tried our heuristic
at different frequencies and picked one with a reasonable solution in an acceptable run time.
A description of each instance is given in the Appendix.

In our experiment results, our heuristic solution is mostly within 5 percent of the la-
grangian lower bounds. In the case of a 30-day planning horizon, the worst-case performance
of our heuristic was 3.63 percent relative to BARON’s optimal solution. In the case of a
60-day planning horizon, the worst-case performance of our heuristic was 5.22 percent of the
Lagrangian lower bound, while the worst-case performance for a 90-day planning horizon

was 3.80 percent of the Lagrangian lower bound.

Table 3 - 30 days planning horizon

Instances Heuristic Upper BARON’s Lagrangian 100*(HUB - 100*(HUB -

Bound (HUB) Optimal (BO) Lower Bound BO)/BO LLB)/LLB

(LLB)

Instance — 1 3691380 3591371 3514188 2.78 2.20
Instance — 2 4078436 3935556 3865842 3.63 1.80
Instance — 3 3804124 3704115 3632046 2.70 1.98
Instance — 4 3216273 3116264 3049704 3.21 2.18
Instance — 5 10274402 10072261 9755596 2.01 3.24
Instance — 6 24814380 24784185 24513650 0.12 1.10
Instance — 7 3969552 3869543 3826080 2.59 1.14

4All values reported in this Table are in minutes

A description of Instance - 3 is given in the Appendix
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Table 4 - 60 days planning horizon

Instances Heuristic Upper BARON’s Lagrangian 100*(HUB - 100*(HUB -

Bound (HUB) Optimal (BO) Lower Bound BO)/BO LLB)/LLB

(LLB)
Instance — 1 7350017 7065437 6985137 4.02 5.22
Instance — 2 8366226 8215604 8213950 1.83 1.85
Instance — 3 7668017 7436231 7363505 3.12 4.14
Instance — 4 6039953 5905291 5856708 2.28 3.13
Instance — 5 15969367 NA 15951365 NA 0.11
Instance — 6 477484128 NA 477435249 NA 0.01
Instance — 7 8226272 8044481 7985381 2.26 3.02
6
Table 5 - 90 days planning horizon

Instances Heuristic Upper BARON’s Lagrangian 100*(HUB - 100*(HUB -

Bound (HUB) Optimal (BO) Lower Bound BO)/BO LLB)/LLB

(LLB)

Instance — 1 10684305 10351742 10293480 3.21 3.80
Instance — 2 12843333 12700593 12656582 1.12 1.48
Instance — 3 11273811 11021981 10955420 2.28 291
Instance — 4 8712383 8660430 8597906 0.60 1.33
Instance — 5 20241880 NA 20206575 NA 0.18
Instance — 6 264647207 NA 264617312 NA 0.01
Instance — 7 12499440 12328581 12468464 1.39 0.25

7 Summary and Future Work

In this paper, we considered the intricate problem of assisting policymakers in making in-
formed binary decisions regarding the implementation of various epidemic control policies
over a specified planning horizon. To approach this challenge, we proposed a comprehen-
sive Mixed Integer Nonlinear Programming (MINLP) framework that models the trade-offs
between minimizing total implementation costs and adhering to constraints that govern the
dynamics of epidemic transmission.

Our contributions include both theoretical insights and computational results. We estab-
lished that the resulting MINLP formulation is computationally intractable due to its large
scale and combinatorial complexity. To address this, we employed a decomposition-based
strategy that partitions the original problem into two more tractable subproblems. Solving
these subproblems to optimality allowed us to generate a Lagrangian lower bound for the

original MINLP. In addition, we developed a practical and intuitive heuristic approach whose

6“NA” represents that BARON did not terminate even after 24 hours of runtime
T“NA” represents that BARON did not terminate even after 24 hours of runtime
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performance was benchmarked against the Lagrangian lower bound and the optimal solution
produced by a commercial solver.

Looking forward, our research agenda includes several key extensions. One priority is
to refine and enhance our heuristic techniques to narrow the optimality gap relative to
the Lagrangian bound. In particular, we are exploring dynamic heuristics that iteratively
construct the set T* based on the evolving trajectory of the epidemic. This dynamic extension
aims to improve the responsiveness and adaptability of our approach, enabling policymakers
to revise decisions in real time as new information becomes available.

Another important direction is the integration of vaccination strategies into our model.
This enhancement will allow us to evaluate both the timing and allocation of vaccines,
and to determine optimal proactive deployment policies that maximize epidemiological and
economic benefits.

We also plan to expand the scope of our model to address operational decisions in health-
care systems, such as optimal staffing levels and timely procurement of medical equipment.
These applications are critical for strengthening the resilience and preparedness of hospitals
and public health infrastructure during epidemics.

Finally, we are in the process of collecting and curating detailed COVID-19 data from
Los Angeles County. Applying our model to this dataset will enable a series of ”what-if”
simulations, providing actionable insights and deepening our understanding of how different

intervention strategies might influence epidemic outcomes under varying conditions.
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Appendix

A  Proof of Theorem 1

Below is the detailed proof of Theorem 1.

Proof. We first express the number of susceptible individuals S; and infected individuals I;

in terms of K, Sy, and Ij.

Sy=81—Ki-(I1=y2+p-1p)-S1-11 = Koy + Koz - 3
where,

Ky = S0 — K1+ So - Io;

Koy =(1-p)-Kr-So- Iy

Note,

Ko < Sy and Koy < K7+ Sp- I

L=hL+K-(1—y+p-y) S1- L1 —Kg-I1 —Kp- I, = Koy + Kby - o
where,

Ky =(1—Kgr—Kp)-Iy+ K- Sq- I;

Kjpy=(p—1)-K;-Sy-1Iy

Note,

Ky = Kr-Iy-Sy and Kb, < Kr-Sy- I

Sy=S8—Ki-(1—ys+p-ys) S2- I

= K31+ Ksz - o + Kss - ys + Kaa -y - y3 + Kas - 43 + Ksg - 45 - 3
where,

K3 = Koy — K1 - Koy - Ky

K3y = Ko —KI'(K22'K£1+K21 ‘Kéz)

K33 =(1—p) K- Ky - Ky

Ky =(1—p) K- (Ke- Ky + Koy - Kby)

17



K35 = K; - Ko - Kby
K36 = (1 _P) 'KI'K22'K§2

Note,

K31 < Sp

K3y < Ky Sy 1y
K33 < Kp-So- 1o
Ks <1

K3 <1

K <1

L=L+K -(1—ys+p-ys) So-lb—Kr-Iy—Kp-Ih=Ky +Kjp - yo+ Kiy-ys+ Kjy - Y2+ y3
+K§5'y§+Ké6'y§'y3

where,

K:/ﬂ - Ké1+KI'K21'K§1

Kéz = K§2+KI‘(K22‘K51 +K21'K§2)
Kyy=—(1—p)  Ki- Ko - Ky

Ky =—(1—p) Ki- (Ko Ky + Kz - Kiy)
K} = K; - Koy - Kb,

Ky =—(1—p)  K;- Ky - K

Note,

Ky = Kr-Iy- Sy

K}y < K- So- Iy

Ky < K;-So- Iy

K, <1

K < 1

K, <1

18



We notice that the coefficients of all the non-linear terms are negligible, which allows
us to write the number of infected (I;) and susceptible (S;) individuals at each period as a
linear function of the decision variables y;. Replacing S; and I; in our original problem will

give us a knap-sack problem which is NP-Complete. O

B Time independent parameters

In this work, we used time-independent parameters. The values of the parameters reported

are the same for the entirety of the planning horizon.

Below is the table for the different costs of each of the interventions

Cost and Efficacy Parameters

Cost and Effi- policy-1, policy-1, policy-2, policy-2, policy-3, policy-3,
cacy level-LOW level-HIGH level-LOW level-HIGH level-LOW level-HIGH
Setup Cost 9 18 90 180 900 1800
Policy Cost 1 2 10 20 100 200
Switching Cost 2 4 20 40 200 400
Infection Cost 3000 3000 3000 3000 3000 3000
Death Cost 8000 8000 8000 8000 8000 8000

P 0.05 0.01 0.0005 0.0001 0.000005 0.000001
p* 0.07 0.03 0.0007 0.0003 0.000007 0.000003

Below is the table for the parameters for each of the instances used in our computational

experiments.
Parameter values for each instance
Instance Infection Rate Recovery Rate Death Rate Initial Infections | Population Size | Policy-Efficacy
(Ki) (Kr) (Kd) (10) N)
Instance-1 0.000009 0.01 0.05 10 100000 P
Instance-2 0.000013 0.01 0.05 10 100000 P
Instance-3 0.000009 0.002 0.05 10 100000 P
Instance—4 0.000009 0.01 0.1 10 100000 P
Instance—5 0.000009 0.01 0.05 100 100000 P
Instance—6 0.000009 0.01 0.05 10 500000 P
Instance-7 0.000009 0.01 0.05 10 100000 P*

P and P* are as per the previous table
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